If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+12y=620
We move all terms to the left:
y^2+12y-(620)=0
a = 1; b = 12; c = -620;
Δ = b2-4ac
Δ = 122-4·1·(-620)
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{41}}{2*1}=\frac{-12-8\sqrt{41}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{41}}{2*1}=\frac{-12+8\sqrt{41}}{2} $
| -46=4x+14 | | 7(p-80=-84 | | -14x-10=10x+2 | | 6x^2-62x+112=0 | | b/4+8=9 | | 16x+54=4x-6 | | 4(2a+3=3(3a-4) | | 4a÷2a=54-a | | 18x-16=10x+8 | | x-3/8x=x | | 3x-17=34 | | 1/2x+5x1/4x+4=42 | | 6p-3=-3+p | | 6+a/4=5 | | 35=r^2+2r | | -2(1+6k)+3=97 | | 10x-48=2x-16 | | x+2x+10=2x+2x-5 | | -17=-5-4k | | 3/8x+-27/8=x+-6 | | c/12+1=1/3 | | 8(12-2x)=40 | | 17=-5-4k | | 8(1-2b)=120 | | 6+1.5x=2.5+2x | | (x+3)^2+7=88 | | 150=5(5x+5) | | 2.1x+56.8=26.6-13.0x | | 18(2x+4)=18 | | x+x+50+.5x+50=600 | | 2(x-4)=4(x+4)-x-24 | | 19x+13=12×+34 |